National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Structural determinants of regulation of surface delivery of NMDA receptors in mammalian cells
Danačíková, Šárka ; Horák, Martin (advisor) ; Bendová, Zdeňka (referee)
N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels activated by agonist glutamate and co-agonist glycine. They play a key role in mediating the fast excitatory synaptic neurotransmission in the mammalian central nervous system. To create a functional heterotetrameric receptor, the presence of two GluN1 subunits combined with GluN2 or GluN3 subunits is necessary. Previous studies confirmed the importance of M3 transmembrane helix and extracellularly localized cysteines in regulation of surface expression of functional NMDA receptors. The aim of my thesis is to elucidate an influence of clinically relevant mutations in M3 transmembrane helix and the role of all known cysteines that form disulphide bonds on surface delivery of NMDA receptor expressed in heterologous monkey kidney fibroblasts cell culture (COS-7). Using molecular biology methods, immunocytochemistry and microscopy I found that the clinically relevant mutations M641I and Y647S in GluN1 subunit and also the mutations of particular cysteines forming disulphide bonds caused substantial decrease of surface expression of NMDA receptors. Furthermore, I discovered that the effect of mutated GluN1 subunits on decrease of surface expression depends on the subunit composition. The contribution of my results lies in elucidating the...
Structural determinants of regulation of surface delivery of NMDA receptors in mammalian cells
Danačíková, Šárka ; Horák, Martin (advisor) ; Bendová, Zdeňka (referee)
N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels activated by agonist glutamate and co-agonist glycine. They play a key role in mediating the fast excitatory synaptic neurotransmission in the mammalian central nervous system. To create a functional heterotetrameric receptor, the presence of two GluN1 subunits combined with GluN2 or GluN3 subunits is necessary. Previous studies confirmed the importance of M3 transmembrane helix and extracellularly localized cysteines in regulation of surface expression of functional NMDA receptors. The aim of my thesis is to elucidate an influence of clinically relevant mutations in M3 transmembrane helix and the role of all known cysteines that form disulphide bonds on surface delivery of NMDA receptor expressed in heterologous monkey kidney fibroblasts cell culture (COS-7). Using molecular biology methods, immunocytochemistry and microscopy I found that the clinically relevant mutations M641I and Y647S in GluN1 subunit and also the mutations of particular cysteines forming disulphide bonds caused substantial decrease of surface expression of NMDA receptors. Furthermore, I discovered that the effect of mutated GluN1 subunits on decrease of surface expression depends on the subunit composition. The contribution of my results lies in elucidating the...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.